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Abstract. Many industrial processes involve the coating of substrates with thin layers of paint. This paper is
concerned with modelling the variations in layer thickness which may occur as a paint layer dries. Firstly, a
systematic derivation is provided of a model based on classical lubrication theory for a drying paint layer consisting
of a non-volatile resin and a volatile solvent. The effects of variable surface tension, viscosity, solvent diffusivity
and solvent evaporation rate are all included in the model. This analysis makes explicit the validity of the physically
intuitive approximations made by earlier authors and hence clarifies when the model is appropriate. Secondly, the
model is used to analyse the evolution of small perturbations to the thickness of, and the concentration of solvent in,
a drying paint layer. This analysis provides an analytical description of the ‘reversal’ of an initial perturbation to the
thickness of the layer and the appearance of a perturbation to an initially flat layer caused by an initial perturbation
to the concentration of solvent. Thirdly, it is shown how a simplified version of the model applicable to the case
of surface-tension-gradient-dominated flow can be derived and solved as an initial-value problem. Fourthly, the
applicability of the present theory developed for solvent-based high-gloss alkyd paints to waterborne coatings is
discussed. Finally, the results obtained are summarised and the practical implications of the work are discussed.
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1. Introduction

Many industrial processes involve the coating of substrates with thin layers of paint. In this
paper we model the variations in the thickness of the layer which may occur as a paint layer
dries. Typically, as a layer of paint dries, any non-uniformities in the inital layer thickness
die out under the action of constant surface tension, eventually leaving a layer of almost
uniform thickness. This levelling motion is described in the early work of Smith, Orchard
and Rhind-Tutt [1] and Orchard [2]. However, the experiments described by Overdiep [3, 4]
show that some solvent-based high-gloss alkyd paints can exhibit more unusual behaviour as
they dry. Firstly, the experiments showed an initially faster rate of levelling than that expected
due simply to constant surface-tension effects. Secondly, and much more unexpectedly, after
several minutes the paint surface underwent ‘reversal’; that is, the original peaks became
troughs and the original troughs became peaks. Recent experiments by Kojima, Moriga
and Takenouchi [5, 6] show the same behaviour in waterborne coatings with high volatility
(compared to water) co-solvent. Overdiep [3, 4] was the first to suggest that the presence
of surface tension gradients might provide an explanation for both these phenomena. As
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Kornum and Raaschou Nielsen [7] describe, solvent-based high-gloss alkyd paints consist of
a non-volatile resin dissolved in a volatile solvent. Since the surface tension of pure resin
is higher than that of pure solvent, the surface tension of the layer is a decreasing function
of the local concentration of solvent. As the solvent evaporates and the layer begins to level
under the action of an initially uniform surface-tension force, the concentration of solvent
near the peaks relative to the concentration near the troughs increases and hence the surface
tension at the peaks becomes lower than that at the troughs. The resulting gradient of surface
tension drives a flow from the peaks to the troughs which enhances the levelling process. The
imbalance in the concentration of solvent is still present when the paint surface becomes level,
and so surface-tension gradients continue to drive the flow and cause the observed reversal.
The phenomena described above are caused by initial non-uniformities in the layer thickness.
However, any initial non-uniformities in solvent concentration will also drive a flow which
will produce non-uniformities in the thickness of even an initially flat layer.

Overdiep [3, 4] proposed a simple yet effective model for a drying paint layer which
included the effect of variable surface tension caused by non-uniformities in the concentration
of solvent and was capable of reproducing the observed reversal. This model has been analysed
and generalised by Wilson [8], Moriarty, Terrill and Wilson [9] and Schwartz and Eley [10],
who found good agreement between analytical and numerical calculations made, using the
model and the experimental results for a planar substrate. The extension of the model to
include the effects of a curved substrate has recently been investigated by Weidner, Schwartz
and Eley [11]. The general problem of flow in thin liquid films driven by surface tension
and surface-tension gradients has been studied by many different authors in a variety of
other physical contexts. Among these Burelbach, Bankoff and Davis [12] investigated the
stability and possible rupture of evaporating and condensing films accounting for vapour
recoil, thermocapillary and van-der-Waals effects, while Jensen and Grotberg [13, 14] analysed
the spreading of both insoluble and soluble surfactant on thin films and De Wit, Gallez and
Christov [15] investigated the dynamics of thin free films with insoluble surfactants.

In this paper we begin in Section 2 by providing a systematic derivation of a generalisation
of Overdiep’s [3, 4] mathematical model based on classical lubrication theory for a drying paint
layer consisting of a non-volatile resin and a volatile solvent. The effects of variable surface
tension, viscosity, solvent diffusivity and solvent evaporation rate are all included in the model.
This analysis makes explicit the validity of the physically intuitive approximations made by
earlier authors and hence clarifies when the model is appropriate. In Section 3 we use the model
to analyse the evolution of small perturbations to the thickness of, and the concentration of
solvent in, a drying paint layer. This analysis provides an analytical description of the reversal
of an initial perturbation to the thickness of the layer and the appearance of a perturbation to an
initially flat layer caused by an initial perturbation to the concentration of solvent. In Section
4 we show how a simplified version of the model applicable to the case of surface-tension-
gradient-dominated flow can be derived and solved as an initial-value problem. In Section
5 we discuss the applicability of the present theory developed for solvent-based high-gloss
alkyd paints to waterborne coatings. Finally, in Section 6 we summarise the results obtained
and discuss the practical implications of the work.

2. Derivation of the model

We consider a two-dimensional situation in which the horizontal and vertical co-ordinates are
denoted by x and y, respectively; with respect to these co-ordinates and to time, t, the free
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A model for drying paint layers 379

Table 1. Relevant parameters and their typical magnitudes for solvent-based high-
gloss alkyd paint taken from Overdiep [4] (Paint B) (�s; �r; S0;M0; E0; �;H;L)
and van der Hout [16] (D0).

Parameter Symbol Value Units

Surface tension of pure solvent �s 2�3 � 10�2 Nm�1

Surface tension of pure resin �r 3�1 � 10�2 Nm�1

Initial concentration of solvent S0 0�5 –
Initial viscosity of paint M0 0�55 Nm�2s
Initial evaporation rate of solvent E0 ' 10�8 ms�1

Initial diffusivity of solvent D0 ' 10�8 m2s�1

Density of paint � ' 103 kg m�3

Characteristic layer thickness H 6�0 � 10�5 m
Characteristic horizontal length L 4�0 � 10�3 m

surface of the paint is given by y = h(x; t). We assume that both the density of resin and the
density of solvent are equal to the constant paint density � and denote the total flux of the
paint by q = (�u; �v) = qr + qs, which comprises the resin flux, qr, and the solvent flux, qs.
We model the paint as a Newtonian fluid with variable viscosity, and so use the Navier-Stokes
equations. The surface tension of the paint, � = �(s), is assumed to be a linear function of the
solvent volume fraction (concentration), s, so that �(s) = �r�s�� , where�� = �r��s > 0
is the difference between the surface tension of pure resin, �r, and that of pure solvent, �s.
The viscosity of the paint, � = �(s), is assumed to depend on the solvent concentration only.
We denote the acceleration due to gravity by g and assume that the pressure in the passive gas
above the paint layer is zero. The relevant parameters and their typical magnitudes are listed
in Table 1. The characteristic lengths may vary from experiment to experiment, and the values
given here for L and H are the wavelength of initial perturbations to the layer thickness and
the initial mean thickness of the layer, respectively, in Overdiep’s [4] experiments. Note that
Overdiep [3, 4] suggests that the solvent evaporation rate is approximately constant over the
timescales we are considering. Typically, the solvent diffusivity is a strongly varying function
which may change by several orders of magnitude as the solvent concentration varies. The
value given in Table 1 is a typical one taken from data supplied to us by van der Hout [16].

In the derivation of the model which follows we allow both the solvent evaporation rate,
E0e(s), and solvent diffusivity, D0d(s), to depend on the solvent concentration. We assume
that the solvent flux consists of a term due to the bulk flow and a diffusive term so that
qs = sq��D0drs, and hence the equation governing the flow of solvent in the paint layer is

�st + q �rs = �D0r � (drs): (1)

On the substrate, y = 0, the resin and solvent fluxes are zero. On the free surface, y = h, the
normal and tangential components of stress are both continuous, and the kinematic conditions
for the resin and solvent are

qr � n = �(1� s)vn; qs � n = �(svn +E0e);

respectively, where n is the unit outward normal to the free surface and vn is the speed of the
free surface in that direction.
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We intend to non-dimensionalise the equations and boundary conditions in the usual way
by scaling x with L; y with H; t with L=U; u with U; v with UH=L; h with H; s with S (a
characteristic measure of the variation in s over the horizontal lengthscale L), � with M0 and
� with �r. Then we shall exploit the smallness of the non-dimensional aspect ratio of the layer,
� = H=L, to simplify the problem, using the familiar lubrication approximation. However,
before we can do this, we need to establish the appropriate characteristic horizontal speed, U ,
which is not known a priori, but is determined by the dominant physical mechanism driving
the flow. There are two extreme cases, namely flow driven purely by mean surface-tension
forces and flow driven purely by surface-tension-gradient forces. For flow driven by mean
surface-tension forces,U is given by balancing the viscous force with the mean surface-tension
force in the normal-stress condition, and soU = Us = �3�r=M0. Alternatively, for flow driven
by surface-tension-gradient forces,U is given by balancing the viscous force with the surface-
tension-gradient force in the tangential-stress condition, and so U = Ug = �S��=M0. The
ratio of these two velocity scales is Ug=Us = S��=�2�r, and we are particularly interested
in situations in which this ratio is O(1) as � ! 0, i.e. situations in which Us and Ug are
comparable.

Two such situations are immediately apparent. In the first case, the variation of surface
tension with O(1) changes in the solvent concentration, ��=�r, is O(1), but changes in
the solvent concentration, S, are only O(�2). This situation is typical of the evolution of a
paint layer with an initially uniform solvent concentration. In the second case, the variation
of surface tension with O(1) changes in the solvent concentration is only O(�2), but now
changes in the solvent concentration are O(1).

If Ug=Us � 1, then the flow is driven by surface-tension-gradient forces; this situation
is treated in Section 4. If Ug=Us � 1, we recover the familiar situation in which the flow is
driven by mean surface-tension forces.

Using the values of the parameters given in Table 1, we obtain Us = 1�9 � 10�7 m s�1

with corresponding typical timescale Ts = L=Us = 2�1 � 104 s, while, taking S = 1, we
have Ug = 2�2� 10�4 m s�1, which is much faster than Us, and Tg = L=Ug = 18 s, which
is correspondingly shorter than Ts. Overdiep’s [3, 4] experimental results indicate that for
the reversal problem the real situation is rather more complicated than either of these two
limiting cases suggests; they show that the timescale for the reversal of the perturbation to
the layer profile is roughly Te = 102 s, which lies between Ts and Tg , with a corresponding
value of Ue = L=Te = 4�0 � 10�5 m s�1. The explanation for this ‘intermediate’ timescale
is that, initially, concentration- and, hence, surface-tension gradients are absent (i.e. S = 0)
and mean surface-tension forces are dominant, but that the evaporation of solvent generates
gradients in the solvent concentration (so that S increases) and hence in the surface tension,
which eventually becomes the dominant mechanism driving the flow.

Non-dimensionalising the equations and boundary conditions as indicated above
introduces, in addition to the aspect ratio, a reduced Reynolds number R = �UL�2=M0,
non-dimensional diffusion coefficient (inverse Péclet number) D = D0=LU and evapora-
tion coefficient E = E0=�U , inverse capillary number C = �3�r=M0U , Marangoni number
M = �S��=M0U and Bond number B = �3�gL2=M0U . Typical values of the parameters
R;D;E;C;M and B with U = Us; Ug and Ue are given in Table 2. Note that, in order to
calculate these values, we took S = �2 in the first case and S = 1 in the last two. Typically,
� is small and so, as indicated earlier, we treat the problem in the asymptotic limit � ! 0.
Motivated by the magnitudes of the parameters given in Table 2, we choose to include the
effects of evaporation, mean surface tension, surface-tension gradients and gravity in the lead-
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A model for drying paint layers 381

ing order problem, but neglect those of inertia. Thus, we assume that E;C;M and B are all
O(1), but that R = o(1) as �! 0. The size of D is left unspecified for the present. Thence the
leading-order velocity (u0; v0), pressure p0 and viscosity �0 satisfy the equations of classical
lubrication theory:

u0x + v0y = 0; (2)

p0x = (�0u0y)y; (3)

p0y = �B: (4)

On the substrate, y = 0, the leading-order boundary conditions on the flux are simply

u0 = v0 = 0: (5)

On the free surface, y = h0, the leading-order versions of the normal1 and tangential force
balance conditions are

�p0 = Ch0xx; (6)

�0u0y = �M(s0x + h0xs0y): (7)

At leading order the kinematic condition for the paint (simply a statement of conservation of
mass of paint) can be written

h0t +Q0x = �Ee0; (8)

where e0 = e(s0) and Q0 is the leading-order horizontal volume flux. Provided that �2=D =
o(1) as �! 0, the leading-order version of (1) is simply

(d0s0y)y = 0;

where d0 = d(s0). At leading order the boundary conditions for the solvent concentration
reduce to s0y = 0 on y = 0 and y = h and so we can deduce at once that s0 = s0(x; t), i.e.
the diffusion of solvent is sufficiently rapid to make the leading-order distribution of solvent
uniform or ‘well-mixed’ across the layer. The leading-order pressure is determined from (4)
and (6). Since s0, and hence �0, are independent of y, we can solve (3) subject to the boundary
conditions (5) and (7) for u0 and hence obtain

Q0 =
h3

0

3�0
(Ch0xx �Bh0)x �

h2
0

2�0
Ms0x: (9)

To determine s0 we need to proceed to next order in the asymptotic analysis. If D � 1,
lateral diffusion of solvent is comparable with convection and we seek a solution in the form
s(x; y; t) = s0(x; t) + �2s1(x; y; t) + o(�2) where s1 satisfies

s0t + u0s0x = D(d0s0x)x +D(d0s1y)y;

subject to the boundary conditions s1y = 0 on y = 0 and

Dd0s1y = �Ee0(1� s0) +Dd0h0xs0x
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Table 2. Typical values of the parameters with U = Us; Ug

and Ue. Note that S = �2 in the first case and S = 1 in the
last two.

U = Us U = Ug U = Ue

R 3�1� 10�10 3�6� 10�7 6�5 � 10�8

D 13 1�1� 10�2 6�2 � 10�2

E 3�5 3�1� 10�3 1�7 � 10�2

C 1 8�7� 10�4 4�8 � 10�3

M 0�26 1 5�4
B 5�1 4�4� 10�3 2�4 � 10�2

on y = h0. So, using (8), we obtain the equation

(h0s0)t + (Q0s0)x = �Ee0 +D(d0h0s0x)x; (10)

which is simply a statement of conservation of mass of solvent. Note that the corresponding
statement of conservation of mass of resin can be obtained explicitly by an appropriate
combination of (8) and (10).

Equations (8) and (10), together with the definition of Q given by Equation (9), represent
a generalisation of the model suggested by Overdiep [4], extended to include the effects of
variable solvent evaporation rate and solvent diffusivity. If �2 � D � 1, lateral diffusion of
solvent is dominated by convection and a similar argument leads to

(h0s0)t + (Q0s0)x = �Ee0 (11)

instead of (10), and so we recover the model described by Overdiep [3] which neglects the
effects of lateral diffusion. If D � 1, lateral diffusion of solvent dominates convection and so
the convective timescale L=U is no longer appropriate and must be replaced with the shorter
diffusive timescaleL2=D0 = L=UD. Rescaling t appropriately, we find that, at leading order,
Equation (8) is just h0t = 0, while the appropriate version of (10) is simply

(h0s0)t = (h0s0x)x:

Since the free surface remains stationary on this shorter timescale over which rapid diffusion
occurs, we shall not pursue this case further here. (Note that in this case we require that
DR = o(1) as �! 0 in order to neglect the unsteady terms in the governing equations.) If the
condition D � �2 fails to hold, the leading-order distribution of solvent across the layer is no
longer uniform and the model becomes more unwieldy as a result. For example, if D = D̂�2

as �! 0, the leading-order version of (1) is

s0t + u0s0x + v0s0y = D̂(d0s0y)y:

As a consequence s0, and therefore d0; e0 and �0 are now in general functions of y as well as
x and t, and so the corresponding expression for Q0 is more complicated than that obtained
previously.
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Hereafter we drop the zero subscript and all quantities correspond to their leading-order
terms in the limit �! 0.

3. Evolution of small perturbations to a drying paint layer

In this section we examine the evolution of small perturbations to the thickness of, and the
concentration of solvent in, a drying paint layer. For simplicity we take d0 = e0 � 1 and seek
solutions in the form

h(x; t) = h0(t) + h1(t) ei�x; s(x; t) = s0(t) + s1(t) ei�x;

where

h0(t) = 1�Et; s0(t) =
S0 �Et

1�Et
;

subject to the general initial conditions h1(0) = H1 and s1(0) = S1. The basic state described
byh0 and s0 represents a decrease in the uniform thickness of the layer and in the concentration
of solvent caused by the uniform evaporation of solvent. Evidently, this solution is valid only
when t < S0=E. This restriction is a consequence of the assumption that the evaporation
rate is constant and can easily be removed if a more realistic choice of e0 is made (see [8]).
However, the timescale over which the reversal occurs is typically much shorter than S0=E
and so taking e0 � 1 is sufficient for the present purpose. The first-order versions of Equations
(8) and (10) can be solved exactly to yield an explicit expression for the solvent perturbation,

s1(t) =
1
h0

"
S1 +E(1� S0)

Z t

0

h1(t̂)

h2
0(t̂)

e�
2D^t dt̂

#
e��

2Dt: (12)

Hence we obtain an integro-differential equation with non-constant coefficients for the per-
turbation to the thickness of the layer h1(t),

h1t +
�h3

0

�0
h1 +

h0

�0

"
S1 +E(1� S0)

Z t

0

h1(t̂)

h2
0(t̂)

e�
2D^t dt̂

#
e��

2Dt = 0; (13)

where �0 = �(s0) and � = �2(�2C + B)=3 and  = �2M=2 are both constants; (13)
is subject to the initial condition h1(0) = H1. Note that the constant � > 0 is simply the
exponential decay rate obtained by Orchard [2] in the absence of surface-tension-gradient
effects ( = 0).

The integro-differential equation (13) can also be written as a linear second-order differ-
ential equation for the new independent variable

F (t) =

Z t

0

h1(t̂)

h2
0(t̂)

e�
2D^t dt̂;

in the form

d2F

dt2
+ f(t)

dF
dt

+ g(t)F + h(t) = 0 (14)
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where

f(t) =
�h3

0

�0
�

2E
h0
� �2D; g(t) =

E(1� S0)

h0�0
; h(t) =

S1

h0�0
;

subject to the initial conditionsF = 0 and dF=dt = H1 at t = 0. OnceF has been determined,
h1 and s1 can be calculated from the expressions

h1(t) = h2
0(t)

dF
dt

e��
2Dt; s1(t) =

S1 +E(1� S0)F (t)

h0(t)
e��

2Dt: (15)

We solved Equation (14) analytically in the asymptotic limit of small evaporation rate
E ! 0 and numerically with a Runge-Kutta-Merson method using NAG routine D02BBF.

Details of the asymptotic solution are given in the Appendix. In particular, this analysis
shows that, if �2 � D � 1 and S1 = 0, then, as t becomes large, the first-order perturbation
to the thickness of the layer approaches the limiting value

�
9M(1� S0)H1E

2�2(�2C +B)2 ; (16)

where the minus sign represents the reversal of the initial perturbation to the free surface, and
the first-order perturbation to the solvent concentration approaches the limiting value

3(1� S0)H1E

�2(�2C +B)
: (17)

These results generalise the corresponding expressions given in [8] for the special caseB = 0.
Alternatively, if S1 6= 0, then, as t becomes large, the first-order perturbations ultimately both
grow linearly in time and eventually they become so large that the asymptotic analysis ceases
to apply.

In order to perform the present numerical calculations we took the function � = �(s) to be
�(s) = exp(�M1(s�S0)), where we found the value ofM1 by equating the leading-order term
in the expansion of�(s) in powers ofE � 1 with the exponential fit for the viscosity involving
the empirically determined constant tk given in [4], to yieldM1 = L=E(1�S0)Utk. Adopting
the surface-tension-gradient scaling with S = 1 and taking tk = 270, we obtain M1 ' 44.
Numerically-calculated and asymptotic values of h1(t) and s1(t) are plotted as functions of t,
using the values of the parameters given in Table 1 in the case �2 � D � 1 in Figures 1 and
2 using the initial conditions H1 6= 0; S1 = 0 and H1 = 0; S1 6= 0, respectively. As expected,
both show good agreement between the numerical calculations and the asymptotic theory
provided that t � 1=EM1(1 � S0) ' 15. Figure 1(a) clearly shows the initial levelling and
eventual reversal of an initial perturbation to the thickness of the layer and Figure 1(b) shows
the corresponding development of a non-uniform perturbation to the initially-uniform solvent
concentration. In particular, Figure 1(a) shows that the free surface becomes flat for the first
time at dimensionless time t ' 6 (corresponding to roughly 102 seconds, in agreement with
the experimental results). Numerical solutions of Equation (14) for other parameter values
(such as those described in [8]) show that the free surface may reverse several times in an
oscillatory manner as the paint dries. In the absence of evaporation the free surface just levels
exponentially in time and the solvent concentration remains constant. Figure 2 shows that an
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A model for drying paint layers 385

Figure 1. Numerically-calculated and asymptotic values of the perturbations to (a) the scaled layer thickness
h1(t)=H1 and (b) the scaled solvent concentration s1(t)=H1, both plotted as functions of time t with the values of
the parameters given in Table 1 in the case H1 6= 0; S1 = 0. The corresponding exact solutions in the case of no
evaporation, E = 0, are also shown.

initial perturbation to the solvent concentration produces a perturbation to the free surface
profile of an initially flat layer. This occurs even in the absence of evaporation, in which case
the perturbation to the free surface ultimately has amplitude�3MS1=2(�2C+B) ' �44S1.

4. Surface-tension-gradient-dominated flow

In this section we investigate the situationUg=Us =M=C � 1 in which the flow is dominated
by surface-tension-gradient effects. For simplicity, we investigate the case �2 � D � 1 and
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386 S. D. Howison et al.

Figure 2. Numerically-calculated and asymptotic values of the perturbations to (a) the scaled layer thickness
h1(t)=S1 and (b) the scaled solvent concentration s1(t)=S1, both plotted as functions of time t with the values of
the parameters given in Table 1 in the case H1 = 0; S1 6= 0. The corresponding exact solutions in the case of no
evaporation, E = 0, are also shown.

neglect the effects of solvent evaporation and of gravity. Adopting the surface-tension-gradient
scaling, a derivation similar to that presented in Section 2 yields the model equations

ht �

 
h2sx

2�

!
x

= 0; st �
hs2

x

2�
= 0: (18)

Hence, h is given by

h =
2�st
s2
x

; (19)
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where s satisfies the quasi-linear second-order hyperbolic equation

3s2
tsxx � 4sxstsxt + s2

xstt = 0: (20)

Equation (20) can be solved exactly. Its characteristic directions are

dx
dt

= �
3st
sx

;
dx
dt

= �
st

sx
;

and the Riemann invariants are given by st=sx and st=s3
x, respectively. We define the average

horizontal flux by u = Q=h = �st=sx. Since u is constant along dx=dt = 3u,

ut + 3uux = 0; (21)

which yields

u = u0(x� 3ut); (22)

where u = u0(x) at t = 0. At t = 0, we prescribe h(x; 0) = h0(x) and s(x; 0) = s0(x), and
so we have

u0(x) = �
s0xh0

2�(s0)
: (23)

For given functions s0; h0 and �, Equation (22) defines u(x; t) implicitly. The solvent con-
centration s then satisfies the first-order equation

st + usx = 0; (24)

which can, in principle, be solved by the method of characteristics to determine s(x; t) and
thence h(x; t). We remark that one of the attractions of this analysis is that it applies when � is
a non-trivial function of s. Note that (22) implies that shocks occur in u if u0x < 0 somewhere.
In practice we expect some or all of the neglected effects of mean surface tension, gravity, or
lateral diffusion of solvent to become significant in these regions of high curvature and act to
smooth out the shock.

EXAMPLE SOLUTION

Consider an initial solvent distribution2 given by s0(x) = 4 + 2 cosx in an initially uniform
layer h0(x) = 1. For simplicity we take �(s) � 1. Using Equation (23), we obtain u0(x) =
sinx and so from (22) u is given implicitly by

u = sin(x� 3ut):

Hence, there is a unique solution for u until t = 1=3, at which time a shock forms. From
Equation (24) the solvent concentration s is given by s = 4+2 cos � where � is given implicitly
by

t =
juj�3=2

2

Z sin �

u

jpj1=2

(1� p2)1=2
dp:
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In order to clarify the local behaviour of the solution near x = 0 we note that u � � along
the characteristics � = x� 3ut � x=(1+ 3t)� 1, and hence that u(x; t) � x=(1+ 3t) near
x = 0. Thus,

s(x; t) � 4+ 2 cos
�

x

(1 + 3t)1=3

�
; h(x; t) �

1
(1 + 3t)1=3

near x = 0. A similar analysis can be performed to show that

s(x; t) � 4� 2 cos
�

(� � x)

(1� 3t)1=3

�
; h(x; t) �

1
(1� 3t)1=3

near x = �. This analysis shows that sx changes sign at both x = 0 and x = �. As t
increases, this change becomes less abrupt near x = 0, while near x = � the opposite is
true and eventually sx becomes singular at t = 1=3. Since negative solvent-concentration
gradients drive positive flow, and vice versa, paint flows away from x = 0 and towards x = �.
Mass conservation demands that the layer thickness must adjust itself accordingly, so while
h decreases gradually at x = 0, it increases rapidly at x = � and when the driving force sx
becomes singular, then so does h.

In practice, the exact solution for s presented above is difficult to use and so (24) was
also solved numerically. The profiles were computed by means of a finite-difference time-
marching scheme, based on an explicit time-stepping procedure. Central differences were
employed to compute the spatial derivatives, and mass conservation was implicitly built into
the numerical scheme. The new solvent distribution and film thickness were updated at each
time step. Symmetry boundary conditions were imposed at the endpoints x = 0; 2� and once
s(x; t) had been computed,h(x; t)was evaluated by means of Equation (19). We also obtained
solutions by computing the time evolution of s(x; t) and h(x; t) directly from Equations (8)
and (10). Figures 3 and 4 show numerically-calculated values of the layer thickness and solvent
concentration, respectively, at t = 0�1; 0�2 and 0�3 and Figure 5 shows the gradient of solvent
concentration at t = 0�3. In particular, Figures 3 and 4 show that the two different numerical
methods of obtaining the solutions are in good agreement, while Figure 5 confirms the local
behaviour of the solution near x = 0 and x = � described above.

5. Application to waterborne coatings

The mathematical model developed here for solvent-based high-gloss alkyd paints also applies
to other physical situations. For example, it also applies to waterborne coatings (WBCs) which
are made up of water, resin and co-solvent. Typically, adding co-solvent lowers the surface
tension of the coating, and so, if the co-solvent is more volatile than water (i.e. it evaporates
faster), it plays the role of the ‘solvent’ and the remainder of the coating plays the role of the
‘resin’ in our model with �� > 0 and hence M > 0 as before. In this case we again expect
faster initial levelling than in the case where co-solvent is absent and one or more reversals of
the free surface profile as the paint dries. Alternatively, if the co-solvent is less volatile than
water, the water plays the role of the solvent, but now with �� < 0 and hence M < 0. In
this case the present model predicts that the evaporation of the solvent creates surface-tension
gradients which resist rather than enhance the levelling. In particular, the analysis in Section
3 shows that this will tend to slow the initial rate of levelling and prevent reversal altogether.
All these predictions are in qualitative agreement with recent experimental results [6]3 which
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Figure 3. Numerically-calculated values of the layer thickness h(x; t) for purely surface-tension-gradient-driven
flow plotted as a function of x=2� at time t = 0�1; 0�2 and 0�3. The symbols denote solutions to Equations (8) and
(10), while the solid lines denote solutions calculated from Equations (19) and (24).

Figure 4. Numerically-calculated values of the solvent concentration s(x; t) for purely surface-tension-gradient-
driven flow plotted as a function of x=2� at time t = 0�1; 0�2 and 0�3. The symbols denote solutions to Equations
(8) and (10), while the solid lines denote solutions calculated from Equations (19) and (24).
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Figure 5. Numerically-calculated values of the gradient of solvent concentration sx(x; t) for purely surface-
tension-gradient-driven flow calculated from Equations (19) and (24) plotted as a function of x=2� at time t = 0�3.
The dashed lines show the analytically-calculated asymptotic behaviour of sx near x = 0 and x = �.

show that a particular waterborne coating with a high volatility co-solvent (specifically WBC/i-
BuOH) levels faster than one without co-solvent (WBC/H2O), which itself levels faster than
one with a low volatility co-solvent (WBC/EGHE). Furthermore, while the profile of the first
coating reverses (twice) during drying, the other two do not reverse at all. Unfortunately, there
is insufficient experimental data to permit the quantitative comparison between experiment
and theory. However, confirmation that inertia is not the cause of the reversal, as the authors
suggest, can be obtained by observing that the reduced Reynolds number for the flow (based
on a typical experimental timescale of 5 s) is indeed small, specifically R = O(10�5).

6. Conclusions and practical implications

In this paper we have given a systematic derivation of a generalisation of Overdiep’s [3, 4]
mathematical model for a drying paint layer. The model, which is based on classical lubrication
theory and models the paint as consisting of a non-volatile resin and a volatile solvent, was
extended to include the effects of variable solvent evaporation rate and solvent diffusivity.

The validity of the model equations depends on the relative sizes of �, the aspect ratio of the
layer, andD, the dimensionless parameter which measures the importance of solvent diffusion
to solvent convection. When �2 � D � 1, the model of Overdiep [3] is recovered. If D � 1,
the model is modified to include lateral diffusion of solvent as suggested by Overdiep [4].
When D � 1, lateral diffusion of solvent dominates the flow, while, if the condition D � �2

fails to hold, the leading-order distribution of solvent across the layer is no longer uniform. In
both these latter two cases Overdiep’s [3, 4] model is no longer valid. Thus, we have shown
that the models derived by previous authors are applicable, provided that the ratio of solvent
diffusion to solvent convection is neither too large nor too small. In particular, this means that

engi576.tex; 26/11/1997; 13:06; v.7; p.14



A model for drying paint layers 391

the horizontal lengthscale of the flow (given, for example, by the lengthscale of the initial
perturbation to a uniform layer) must satisfy

L�

 
H5�r

D0M0

!1=4

for mean surface-tension-dominated flow or

L�

 
H3S��

D0M0

!1=2

for surface-tension-gradient-dominated flow. As we have already observed, the diffusivity of
solvent may decrease by several orders of magnitude as the solvent concentration decreases
from 1 to 0, suggesting that the models may become invalid at low solvent concentrations. In
practice, however, the decrease in diffusivity with solvent concentration may be accompanied
by a rapid increase in the viscosity. This will mean that the drop in the effective diffusivity
(accounting for the change in the viscosity) may not be as large as the drop in the diffusivity
and so the models may actually apply over the whole range of solvent concentrations.

We also analysed the evolution of small perturbations to the thickness of, and the concen-
tration of solvent in, a drying paint layer. The results show that surface-tension-gradient effects
result in a faster initial levelling rate than that due solely to mean surface-tension effects and
can cause an initial perturbation to the profile layer to reverse (i.e. peaks become troughs and
vice versa) one or more times. They also show that an initially flat free surface can become
perturbed if the solvent concentration is not initially uniform. In particular, the results show
that surface-tension-gradient effects alone are sufficient to explain all these phenomena. This
issue has been discussed by several previous authors. For example, in a recent experimental
paper [5] describing the levelling of various waterborne coatings, while acknowledging the
importance of surface-tension-gradient effects, it is stated that ‘The reappearance of surface
ripples cannot be explained without the effects of inertia ...’. The present work clearly shows
that, while other factors such as variations in viscosity during drying, non-uniform solvent
evaporation and non-uniform solvent diffusivity (all of which are included in the present mod-
el) and fluid inertia (which is negligible in all but the most extreme practical situations) can,
of course, affect the progress of levelling, none is required to explain the observed reversal
behaviour satisfactorily.

In some circumstances the flow is initially dominated by surface-tension-gradient effects.
In these situations the governing equations simplify to a single quasi-linear second-order
hyperbolic equation which can be solved analytically as well as numerically. The solutions
thus obtained clearly show that surface-tension-gradient effects can produce regions of high
curvature in the thickness of even an initially flat layer, once again emphasising the importance
of achieving uniform solvent distributions at the beginning of the drying process.

Finally, we showed how the present model can also be applied to waterborne coatings.
Although a quantitative comparison between theory and experiment was impossible in this
case, we were able to show that the qualitative agreement between the two is excellent.

In conclusion, we note that the present model also applies to other industrial situations
involving thin coatings consisting of volatile and non-volatile components with different
surface tensions, such as, for example, the manufacture of electrical components.
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Appendix

Motivated by the results listed in Table 2 which show that the parameter E is typically small,
in this Appendix we obtain the asymptotic solution of Equation (13) in the limit of small
non-dimensional evaporation rate, E ! 0. Following the approach of Wilson [8], we seek
solutions for h1(t) and s1(t) in the forms

h1(t) = h10(t) +Eh11(t) +O(E2); s1(t) = s10(t) +Es11(t) +O(E2):

Clearly, this expansion scheme is only useful provided that

t�
1
E

min
�

1;
1

(1� S0)
;

1
M1(1� S0)

�
;

where M1 = �d�=dsjs=S0. At leading order in E, (12) yields

s10 = S1 e��
2Dt; (A1)

while (13) gives

h10t + �h10 + S1 e��
2Dt = 0; (A2)

and so

h10 =

�
H1 +

S1

� � �2D

�
e��t �

S1

� � �2D
e��

2Dt: (A3)

At first order, (12) yields

s11=S1

�
1�

(1� S0)

���2D

�
t e��

2Dt+
1�S0

���2D

�
H1+

S1

���2D

�
(e��

2Dt�e��t); (A4)

while (13) gives

h11t + �h11 + ( �At+ �B) e��t + ( �Ct+ �D) e��
2Dt = 0; (A5)

where the constants �A; �B; �C and �D are given by

�A = ��(3 +M1(1� S0))

�
H1 +

S1

� � �2D

�
;

�B = �
(1� S0)

� � �2D

�
H1 +

S1

� � �2D

�
;

engi576.tex; 26/11/1997; 13:06; v.7; p.16



A model for drying paint layers 393

�C =
S1

� � �2D
(2� + �2D + (�2DM1 � )(1� S0));

�D =
(1� S0)

� � �2D

�
H1 +

S1

� � �2D

�
:

The solution to Equation (A5) has the form

h11 = (�at2 +�bt+ �c) e��t + ( �dt+ �e) e��
2Dt; (A6)

where

�a = �
�A

2
; �b = � �B; �c = ��e =

(� � �2D) �D � �C

(� � �2D)2 ; �d = �
�C

� � �2D
;

are constants. These solutions clearly show that when D � 1 diffusion eventually dominates
and all perturbations die out as t becomes large4. However, when lateral diffusion of solvent
is dominated by convection (�2 � D � 1), we obtain the corresponding solutions by setting
D = 0 in the above expressions and their behaviour is rather more interesting. (Note that
setting D = 0 in these expression does not mean that D = 0, but simply that D � 1:)
Equations (A1) and (A3) show that in this case at leading order the perturbation to the solvent
concentration is unaltered, while, as t becomes large, the perturbation to the free surface
ultimately has amplitude �S1=� = �3MS1=2(�2C + B). Equations (A4) and (A6) show
that the long-time behaviour of s11 and h11 depends crucially on whether S1 = 0 or S1 6= 0.
If S1 = 0 then as t becomes large

s11 !
(1� S0)H1

�
=

3(1� S0)H1

�2(�2C +B)
;

h11 ! �
(1� S0)H1

�2 = �
9M(1� S0)H1

2�2(�2C +B)2 ;

the latter expression representing the reversal of the initial perturbation to the free surface
and the former the appearance of a corresponding perturbation to the solvent concentration.
Alternatively, if S1 6= 0 then as t becomes large

s11 � S1

�
1�

(1� S0)

�

�
t = S1

�
1�

3M(1� S0)

2(�2C +B)

�
t;

h11 � �
S1

�

�
2�

(1� S0)

�

�
t = �

3MS1

2(�2C +B)

�
2�

3M(1� S0)

2(�2C +B)

�
t;

so ultimately js11j and jh11j both grow linearly in time and eventually they become so large
that the expansion scheme fails.

Notes
1 Notice that because the surface tension is given by � (s) = 1 � �2Ms0=C + o(�2), it contributes only a

constant to the leading-order normal-stress condition (6). Overdiep [3, 4] and Wilson [8] both incorrectly retained
higher-order terms arising from the variation in the surface tension in this boundary condition.
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2 In the case of purely surface-tension-gradient-driven flow we have the freedom to rescale s arbitrarily, and
have done so here to simplify the presentation that follows.

3 Note that in Figure 1 of this paper the experimental points are incorrectly labelled.
4 More precisely this means that t satisfies max(��1; ��2D�1)� t� S0=E.
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